Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells.
نویسندگان
چکیده
The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs.
منابع مشابه
Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells
Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...
متن کاملAligned Nanotopography Promotes a Migratory State in Glioblastoma Multiforme Tumor Cells
Glioblastoma multiforme (GBM) is an aggressive, Grade IV astrocytoma with a poor survival rate, primarily due to the GBM tumor cells migrating away from the primary tumor site along the nanotopography of white matter tracts and blood vessels. It is unclear whether this nanotopography influences the biomechanical properties (i.e. cytoskeletal stiffness) of GBM tumor cells. Although GBM tumor cel...
متن کاملControlling Self-Renewal and Differentiation of Stem Cells via Mechanical Cues
The control of stem cell response in vitro, including self-renewal and lineage commitment, has been proved to be directed by mechanical cues, even in the absence of biochemical stimuli. Through integrin-mediated focal adhesions, cells are able to anchor onto the underlying substrate, sense the surrounding microenvironment, and react to its properties. Substrate-cell and cell-cell interactions a...
متن کاملExploring the roles of integrin binding and cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in soft and stiff hydrogels subjected to dynamic compression.
The objective of this study was to explore how the response of mesenchymal stem cells (MSCs) to dynamic compression (DC) depends on their pericellular environment and the development of their cytoskeleton. MSCs were first seeded into 3% agarose hydrogels, stimulated with the chondrogenic growth factor TGF-β3 and exposed to DC (~10% strain at 1Hz) for 1h on either day 7, 14, or 21 of culture. At...
متن کاملmTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells.
The cell cytoskeleton interprets and responds to physical cues from the microenvironment. Applying mechanical force to mesenchymal stem cells induces formation of a stiffer cytoskeleton, which biases against adipogenic differentiation and toward osteoblastogenesis. mTORC2, the mTOR complex defined by its binding partner rictor, is implicated in resting cytoskeletal architecture and is activated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 31 6 شماره
صفحات -
تاریخ انتشار 2010